HORIZONTAL DEFLECTION POWER DRIVER

- CONTROLLED DRIVING OF THE POWER TRANSISTOR DURING TURN ON AND OFF PHASE FOR MINIMUM POWER DISSIPATION AND HIGH RELIABILITY
- HIGH SOURCE AND SINK CURRENT CAPABILITY
- DISCHARGE CURRENT DERIVED FROM PEAK CHARGE CURRENT
- CONTROLLED DISCHARGE TIMING
- DISABLE FUNCTION FOR SUPPLY UNDER VOLTAGE AND NONSYNCHRONOUS OPERATION
- PROTECTION FUNCTION WITH HYSTERESIS FOR OVERTEMPERATURE
- OUTPUT DIODE CLAMPING
- LIMITING OF THE COLLECTOR PEAK CURRENT OF THE DEFLECTION POWER TRANSISTOR DURING TURN ON PERIOD
- SPECIAL REMOTE FUNCTION WITH DELAY TIME TO SWITCH THE OUTPUT ON

DESCRIPTION

The TDA8143 is a monolithic integrated circuit designed to drive the horizontal deflection power tran-sistor.
The current source characteristic of this device is adapted to the non-linear current gain behaviour of the power transistor providing a minimum power dissipation. The TDA8143 is internally protected against short circuits and thermal overload.

PIN CONNECTIONS

PIN FUNCTIONS

Pin	Name	Function
1	Power Ground	Common Ground
2	Ouptut	Device Output
3	VCC	Supply Voltage
4	Sense Input	Input voltage that determines output current.
5	Sense GND	Reference Ground for Input Voltage at SENSE INPUT.
6	CExT	Capacitor between this terminal and SENSE GROUND determines the current slope dlo/dt during OFF phase.
7	Special Remote/Standby	Low level at this input sets the device after a delay time t inde
8	Control Input the standby mode	
9	Protection and Remote Standby Input	High level at this input switches the BU508 level at this input switches the BU508 off independent from all other inputs (1st priority).

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$V_{C C}$	DC Supply Voltage	18	V
I_{d}	Output Current	Internally Limited	
$\mathrm{P}_{\text {tot }}$	Power Dissipation	Internally Limited	
$\mathrm{T}_{\text {stg }}, \mathrm{T}_{\mathrm{j}}$	Storage and Junction Temperature	$-40,+150$	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {oper }}$	Operating Temperature	$0,+70$	${ }^{\circ} \mathrm{C}$

THERMAL DATA

Symbol	Parameter		Value	Unit
$\mathrm{R}_{\text {th }}(\mathrm{j}-\mathrm{a})$	Thermal Resistance Junction-ambient	Max.	70	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {th }}(\mathrm{j}-\mathrm{c})$	Thermal Resistance Junction-case	Max.	10	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ($\mathrm{V} \mathrm{cc}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
$V_{C C}$	Supply Voltage		7		18	V
I_{Q}	Quiescent Current	All Inputs Open	10	15	25	mA
$\mathrm{l}_{\mathrm{p} 0}$	Positive Output Current (source)		1.5			A
In0	Negative Output Current (sink)		2			A
100	Positive quiescent output current forcing the output to 6 V and the sense input to ground output externally forced to 6 V .	Remote Input1 Remote Input0	$\begin{gathered} 120 \\ 50 \end{gathered}$	$\begin{gathered} 150 \\ 80 \end{gathered}$	$\begin{aligned} & 200 \\ & 100 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Gon	Transconductance ON Phase (1)	See Figure 1	1.8	2.0	2.2	A/V
Goff	Transconductance OFF Phase (2)	See Figure 1	1.8	2.0	2.2	A/V
Gremote	Transconductance Standby Mode	Remote Input0	0.675	0.75	0.825	A/V
I_{5}	Current Source Pin 6	$\mathrm{V}_{7}=500 \mathrm{mV}$	135	165	200	$\mu \mathrm{A}$
Rins	Sense Input Resistance	$\begin{aligned} & V_{s}>0 \\ & V_{s}<0 \end{aligned}$	$\begin{gathered} 0.7 \\ 0.35 \end{gathered}$	$\begin{gathered} 1 \\ 0.5 \end{gathered}$	$\begin{aligned} & 1.3 \\ & 0.7 \end{aligned}$	$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{k} \Omega \end{aligned}$
IINS	Sense Input Bias Current	$\begin{aligned} & \hline V_{S}=0 \\ & \text { Remote Input =1 } \\ & \hline \end{aligned}$	-200	- 300	-400	$\mu \mathrm{A}$
Rsyn	Synchronous Detection Input Resistance	$\begin{aligned} & \mathrm{V}_{\mathrm{SYN}}<7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{SYN}}>7 \mathrm{~V} \end{aligned}$	$\begin{gathered} 30 \\ 7 \end{gathered}$	$\begin{aligned} & 60 \\ & 10 \end{aligned}$	$\begin{gathered} 150 \\ 15 \end{gathered}$	$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{k} \Omega \end{aligned}$
$\mathrm{V}_{\text {THS }}$	Threshold Voltage of the Synchronous Detection Input		1	1.8	2.8	V
$\mathrm{V}_{\text {SYN }}$	SYNC DETECT Input Voltage				30	V
$\mathrm{V}_{\text {THA }}$	Threshold Voltage of Control Input		1.5	2	2.5	V
IINA	Pull up Current of Control Input	$\begin{aligned} & 0<\mathrm{V}_{\mathbb{N}}<\mathrm{V}_{\text {THA }} \\ & \mathrm{V}_{\mathbb{I}}>\mathrm{V}_{\text {THA }}+0.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} -50 \\ -1 \end{gathered}$	$\begin{gathered} -100 \\ 0 \end{gathered}$	$\begin{gathered} -160 \\ +1 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
$\mathrm{V}_{\text {THB }}$	Threshold Voltage Remote Input		1.5	2	2.5	V
IINB	Pull-up Current of the Remote Input	$\begin{aligned} & 0<\mathrm{V}_{\mathbb{N}}<\mathrm{V}_{\text {THB }} \\ & \mathrm{V}_{\text {IN }}>\mathrm{V}_{\text {THB }}+0.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} -50 \\ -1 \\ \hline \end{gathered}$	$\begin{gathered} -100 \\ 0 \end{gathered}$	$\begin{gathered} -160 \\ +1 \\ \hline \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
t_{dr}	Remote Delay Time (3)		190	250	300	$\mu \mathrm{s}$
$\mathrm{t}_{\text {don }}$	On Delay Time			3	4.5	$\mu \mathrm{s}$
Vcc-Vout	Output Voltage Drop for $\mathrm{Ip}_{\mathrm{p}}=1 \mathrm{~A}$		2	2.8	3	V
$\mathrm{V}_{\text {cc on }}$	Supply Voltage for Device "ON"	$\mathrm{I}_{0} \geq 0$	5.8	6.4	7.0	V
$\mathrm{V}_{\text {Cc OFF }}$	Supply Voltage for Device "OFF" (output internally switched to ground)		5.6	$\mathrm{V}_{\mathrm{Cc}} \mathrm{ON}$ -0.2 V	6.8	V
$\mathrm{V}_{\text {s limit }}$	Sense Limit Voltage (4)		0.8	0.9	1	V

Notes: 1. Gon is measured with V_{4} varying from 150 mV to 350 mV (Pin 6 is grounded)
2. Goff is measured with V_{6} varying from 150 mV to 350 mV (Pin 4 is grounded)
3. When the remote input goes from HIGH to LOW the BU508 is switched off and it remains in this condition for the time tdr.
4. The sense input voltage V_{s} is internally limited and results in a limited positive output current $I_{p 0}=g$. V_{s} limit. Note that due to the storage time ts of the BU508 limiting of V_{s} leads to a reduced base current of the BU508 and the output current lo is going to the positive quiescent current I_{00}.

TRUTH TABLE

Logics Inputs		Output I_{0}		Mode
Control Input	Remote/Standby			
Floating or 1	Floating or 1 Floating or 1	$\begin{aligned} & l_{0}>0 \\ & 10<0(5) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { BU508 ON } \\ & \text { BU508 OFF } \end{aligned}$	Normal Function
X	0	$\begin{aligned} & \mathrm{I}_{0}<0(5) \\ & 0<t<t_{d r} \end{aligned}$	BU508 OFF	Remote/Standby
X	0	$\begin{aligned} & \mathrm{I}_{0}>0 \\ & \mathrm{t}>\mathrm{t} \mathrm{dr} \end{aligned}$	BU508 ON	Function

Note : 5. lo <0 means that the sink current flows into the output to ground.

Figure $1: \frac{G_{o N}}{V_{\text {Pin } 3}}$ and $\frac{\left|G_{\text {ofF }}\right|}{V_{\text {Pin }}}$

Figure 2 : Large Screen Application

COMPONENTS LIST FOR TYPICAL APPLICATION

CRT	22"/26" 100°	14"/20" 90°	CRT	22"/26" 100°	14"/20" 90°
$\begin{aligned} & \mathrm{C}_{\mathrm{a}} \\ & \mathrm{R}_{0} \\ & \mathrm{C}_{0} \\ & \mathrm{~L}_{0} \end{aligned}$	$\begin{gathered} 47 \mu \mathrm{~F} \\ 27 \Omega 2 \mathrm{~W} \\ 220 \mu \mathrm{~F} \\ 10 \mu \mathrm{H} \end{gathered}$	$\begin{gathered} 47 \mu \mathrm{~F} \\ 27 \Omega 1 \mathrm{~W} \\ 220 \mu \mathrm{~F} \\ 10 \mu \mathrm{H} \end{gathered}$	$\begin{aligned} & \mathrm{R}_{\mathrm{b}} \\ & \mathrm{C}_{\mathrm{b}} \\ & \mathrm{R}_{\mathrm{s}} \\ & \mathrm{C}_{\mathrm{s}} \end{aligned}$	$\begin{gathered} 4.7 \Omega \\ 47 \mathrm{nF} \\ 0.15 \Omega \\ 1 \mathrm{nF} \end{gathered}$	$\begin{aligned} & 4.7 \Omega \\ & 47 \mathrm{nF} \\ & 0.1 \Omega \\ & 1 \mathrm{nF} \end{aligned}$

APPLICATION INFORMATION

The conventional deflection system is shown in Figure 3. The driving circuit consists of a bipolar power transistor driven by a transformer and a medium power element plus some passive components.
During the active deflection phase the collector current of the power transistor is linearly rising and the driving circuitry mustbe adapted to the required base current in order to ensure the power transistor saturation.
According to the limited components number the typical approach of the present TVs provides only a rough approximation of this objective; in Figure 4 we give a comparison between the typical real base current and the ideal base current waveform and the collector waveform.
The marked area represents a useless base current which gives an additional power dissipation on the power transistor.
Furthermoreduring the turn-ON and turn-OFF transient phase of the chassis the power transistor is extremely stressed when the convenctional network cannot guarantee the saturation ; for this reason, generally, the driving circuit must be carefully designed and is different for each deflection
system.
The new approach, using the TDA8143, overcomes these restrictions by means of a feedback principle.
As shown in Figure 4, at each instant of time the ideal base current of the power transistor results from its collector current divided by such current gain which ensure the saturation; thus the required base current l_{b} can be easily generated by a feedback transconductance amplifier g_{m} which senses the deflection current across the resistor R_{s} at the emitter of the power transistor and delivers:

$$
\mathrm{l}_{\mathrm{b}}=\mathrm{R}_{\mathrm{s}} \bullet \mathrm{~g}_{\mathrm{m}} \bullet \mathrm{l}_{\mathrm{e}}
$$

The transconductance must only fulfill the condition :

$$
\frac{1}{1+\beta \min } \cdot \frac{1}{R_{s}}<g m<\frac{1}{R_{s}}
$$

where β is the minimum current gain of the transitor. This method always ensures the correct base current and acts time independent on principle.
For the turn-OFF, the base of the power transistor must be discharged by a quasi linear time decreasing current as given in Figure 5.
Conventional driver systems inherently result into a stable condition with a constant peak current magnitude.

Figure 3 : Conventional Horizontal Deflection System for TVs

Figure 4: Waveforms of Collector and Base Current

This is due to the constant base charge in the turn-ON phase independent from the collector current ; hence a high peak current results into a low storage time of the transistor because the excess base charge is a minimum and vice versa. In the active deflection the required function, high peak current-fast switch-OFF and low peak current-slow switch-OFF, is obtained by a controlled base discharge current for the power transistor ; the negative slope of this ramp is proportional to the actual sensed current.
As a result, the active driving system even improves the sharpness of vertical lines on the screen compared with the traditional solution due to the increased stability factor of the loop represented as the variation of the storage time versus the collector peak current.

Figure 5

CIRCUIT DESCRIPTION

Figure 6 shows the block diagram of the TDA8143, the circuit consists of an input transconductance amplifier composed by Q1, Q2, Q3 and Q4.
The symmetrical output current is fed into the load resistor R1 and R2 ; the two amplifiers V1 and V2 realize a floating voltage to current converter which can drive 1.2A sink current and 2A source current for a wide common output range.
So, the overall transconductance results into :

$$
g_{m}=\frac{R 1+R 2}{R 3} \cdot \frac{1}{R 5}
$$

A current source l_{1} generates a drop of 70 mV across the resistor R4 which provides an output bias current of 140 mA ; the control input determines the turn ON/OFF function.
In the ON phase, Q5 shorts the external capacitor
C_{t}. Within the input voltage range $0<\mathrm{V}_{\text {in }}<750 \mathrm{mV}$ the element realizes the transconductance function ; lower voltages are clamped by the D1/Q6 configuration.
For input voltages higher than 750 mV , Q7 limits the maximum output current at 1.5 A peak.
In the turn-OFF mode, C_{t} will be charged by the controlled source I_{2} which is proportional to the input voltage, by this way, the output current decreases quasi linearly and the system stability is reached.
During the flyback phase, the IC is enabled via the sync. detector input ; this function with the limited sink and source current together with the undervoltage turn-OFF and a chip temperature sensor ensure a complete protection of the IC.

Figure 6 : Block Diagram of the Integrated Horizontal Driver

In Figure 7 is shown the application diagram of the TDA8143, the few external component and the automatic handling possibility ensures a lower application cost versus the conventional approach shown in Figure 3.
In Figure 8 is shown the currents and voltage waveforms of the driver circuit of Figure 7 as to be seen, the driving charge $\mathrm{I}_{\mathrm{b}} \cdot \mathrm{t}_{\mathrm{on}}$ has been reduced at minimum.

The power dissipation on this application condition is about 1.3 W .

The presence of thermal shut-down circuit means that the heatsink can have a smaller factor of safety compared with that of a conventional circuit.
If for any reason, the junction temperature increases up to $150^{\circ} \mathrm{C}$, the thermal shut-down simply switches off the device.

Figure 7 : Integrated Horizontal Driver

Figure 8 : Signal Diagrams of the Driver Circuits

$I_{C}=1.5 \mathrm{~A} / \mathrm{cm}$

PACKAGE MECHANICAL DATA

9 PINS - PLASTICSIP

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No licence is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.
© 1994 SGS-THOMSON Microelectronics - All Rights Reserved
Purchase of $I^{2} C$ Components of SGS-THOMSON Microelectronics, conveys a license under the Philips $I^{2} C$ Patent. Rights to use these components in a $I^{2} C$ system, is granted provided that the system conforms to the $I^{2} C$ Standard Specifications as defined by Philips.

SGS-THOMSON Microelectronics GROUP OF COMPANIES
Australia - Brazil - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

